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The Perils of Anonymized Data

Research on social networks: public vs. sensitive data

Public data: Web pages, blogs, discussion boards, Wikipedia,
open social networking sites.

Sensitive: E-mail, IM, voice, physical proximity.
E.g. nodes are e-mail or IM accounts;

edge (v ,w) if v communicates with w .

Anonymization of sensitive data:

Consider research focused on structure and dynamics, not
node identities.

To anonymize: replace node names with random IDs.

After doing this, is it safe to release?

Jon Kleinberg Anonymized Networks



An Attack

With more detailed data, anonymization has run into trouble:

Identifying on-line pseudonyms by textual analysis
[Novak-Raghavan-Tomkins 2004]

De-anonymizing Netflix ratings via time series
[Narayanan-Shmatikov 2006]

The AOL query logs [“This was a screw-up, and we’re angry
and upset about it.” —AOL press release, 7 August 2006]

Our setting is much starker:

No text, time-stamps,
or node attributes

Just a graph with nodes
numbered 1, 2, 3, . . . , n.
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Attacks on Anonymized Data

Analogy with passive vs. active attacks in cryptography

Passive attack: observe data as it is presented.

Active attack: insert yourself into the process, potentially
causing additional data to be generated.

Template for an active attack on an anonymized network
[Backstrom-Dwork-Kleinberg 2007]

Attacker can create (before the data is released)

nodes (e.g. by registering an e-mail account)
edges incident to these nodes (by sending mail)

Privacy breach: learning whether there is an edge between
two existing nodes in the network.

Note: attacker’s actions are completely “innocuous.”

Main result: active attacks can easily compromise privacy by
creating very few additional nodes.
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An Attack

100M nodes

Scenario:

Suppose a big company were going to release an anonymized
communication graph on 100 million users.
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An Attack

100M nodes

An attacker chooses a small set of b user accounts to “target”:

Goal is to learn edge relations among them.
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An Attack

100M nodes

Before dataset is released:

Create a small set of k new accounts, with links among them,
forming a subgraph H.

Attach this new subgraph H to targeted accounts.
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An Attack

100M+12 nodes

When anonymized dataset is released, need to find H.

Why couldn’t there be many copies of H in the dataset?
(We don’t even know what the network will look like ... )

Why wouldn’t it be computationally hard to find H?
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An Attack

100M+12 nodes

In fact,

Theorem: small random graphs H will likely be unique and
efficiently findable.

Erdös-Rényi construction; each edge present with prob. 1/2.
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An Attack

100M+12 nodes

Once H is found:

Can easily find the targeted nodes by following edges from H.
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Specifics of the Attack

First version of the attack:

Create random H on (2 + ε) log n nodes.
Can compromise ∼ (log n)2 targeted nodes.

In experiments on 4.4 million-node LiveJournal graph,
7-node graph H can compromise 70 targeted nodes
(and hence ∼ 2400 edge relations).

Second version of the attack:

Logarithmic size is not optimal.

Can begin breaching privacy with H of size ∼
√

log n.

Passive attacks:

In LiveJournal graph: with reasonable probability, you and 6
of your friends chosen at random can carry out the first
attack, compromising about 10 users.
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Specifics of the Attack

1

3 4

2

65

H
targeted nodes

Random subgraph H (each edge with prob. 1
2).

Link each targeted node to distinct subset of nodes in H.

Must show
H is unique up to isomorphism (even after plugging it into rest
of graph).
H is efficiently findable in unlabeled graph.
H has no internal symmetries (automorphisms); this is easy.
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Why is H Unique? Ideas from Ramsey Theory

Basic calculation at the foundation of

Theorem (Erdös, 1947): There exists an n-node
graph with no clique and no independent set of
size > 2 log n.

Quantitative bound for Ramsey’s Theorem;
one of the earliest uses of random graphs.

clique

independent set

The calculation:

Build random n-node graph, include each edge with prob. 1
2 .

There are < nk sets of k nodes; each is a clique or
independent set with probability ≈ 2−k2/2.

Product nk · 2−k2/2 upper-bounds probability of any clique or
indep. set; it drops below 1 once k exceeds ≈ 2 log n.
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Why is H Unique? Ideas from Ramsey Theory

Erdös: Graph is random, subgraph is non-random.
Our case: Subgraph (H) is random, graph is non-random.

But main calculation starts from same premise:

Almost correct: there are < nk subgraphs that could be a
second copy of H, and each is isomorphic to H with
prob. ≈ 2−k2/2.

1

3 4

2

65

H
targeted nodes Analysis is greatly

complicated because
H is plugged into full
graph.

New copies of H
could partly overlap
original copy of H.
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Finding the subgraph H

To find H:

Can assume there is a path through
nodes 1, 2, . . . , k.

Start search at all possible nodes in G .

Prune search path at depth j if edges
back from node j don’t match, or if
degree of j doesn’t match.

Probability of a spurious path surviving to depth j is ≈ 2−j2/2

(modulo overlap worries).

Overall size of search tree slightly more than linear in n.
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Experiments

Simulated the attack on
social/blogging network
LiveJournal

4.4 million nodes,
77 million edges
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With 7 nodes, degrees in [20, 60], success rate > 90%.

Average of 70 nodes compromised (2415 edges).

Search tree about 90,000 nodes; recovery time < 1 sec.
7 nodes much less than 2 log n;
randomization of degrees crucial to performance.
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Stronger Theoretical Bound

Variant on construction breaches
privacy with H of size ∼

√
log n:

Optimal up to constant factors.

Construct H as before on k nodes,
but connect to b = k

3 targeted
nodes.

With high prob., min. internal cut
in H exceeds b = cut to rest of
graph.

Jon Kleinberg Anonymized Networks



Stronger Theoretical Bound

Recovery:

Break graph up along cuts of size ≤ b.
Uses Gomory-Hu tree computation
(e.g. Flake et al. 2004)

Can prove that H will be one of the
components after this decomposition.

Uniqueness of H:

After breaking apart the graph, there are ≤ n
k size-k

components other than H.

Each is isomorphic to H with probability ≈ 2−k2/2.

Now 2−k2/2 only has to cancel n
k , not nk ,

so k ≈
√

log n is enough.
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Recovery: Gomory-Hu Trees

Recovery: Break graph up along
cuts of size ≤ b.

To do this, build Gomory-Hu tree:

Tree T with same node set as
original graph.
To find min. v -w cut in graph,
delete min-weight edge on v -w
path in T .
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To find H: delete all edges in T of weight ≤ b.

Can prove H will be one of the resulting components.
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Recovery: Gomory-Hu Trees

Uniqueness of H:

After breaking apart the graph,
there are ≤ n

k components of size
k, other than H.

Each is isomorphic to H with
probability ≈ 2−k2/2.

Now just need n
k · 2

−k2/2 � 1,
so k ≈

√
log n is enough.
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Passive Attacks

If you’re already in the network, can you carry out this attack with
no preparation?

A node v recruits its neighbors.

Suppose neighborhood subgraph N(v)
is unique (and efficiently findable).

If a node w is the only one to attach
to a particular subset of N(v), then w
is compromised.

What is the probability N(v) is unique, as a function of its size?
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Uniqueness of Neighborhood Subgraphs
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In LiveJournal graph, number of distinct k-node N(v)’s:

Small k: approx. the number of distinct k-node graphs.
Larger k: approx. the number of nodes of degree k.

If your degree is reasonably large, your pattern of friends is very
likely unique.
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Passive Attacks

Don’t need full neighbor subgraph.

Attack has reasonable chance of
success if you just recruit 4-6 of
your friends.
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With 6 friends, can compromise
about 10 nodes.

Can compromise many more with
some advance linking: a
“semi-passive” attack.
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The Perils of Anonymized Data

What’s the conclusion from all this?

Doesn’t apply to social network data that’s already public;
orthogonal to issues of legal/contractual safeguards.

But widespread release of an anonymized social network?
Danger: you don’t what someone’s hidden in there.
And passive attacks don’t even require advance planning.

Further directions: privacy-preserving mechanisms for making
social network data accessible.

May be difficult to obfuscate network effectively
(e.g. [Dinur-Nissim 2003, Dwork-McSherry-Talwar 2007])
Interactive mechanisms for network data may be possible
(e.g. [Dwork-McSherry-Nissim-Smith 2006])
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